- 1. A sample of 12 pieces of data is collected, and we wish to perform the **level test** H0 vs. Ha. The population standard deviation is known to be 0.30. The sample mean is used to calculate the data z value of 1.75.
 - a) **Determine the p-value.**
 - b) If the true population mean is 4.2, was an error made in this test? If so, which type?
 - c) If the true population mean is 4.0, was an error made in this test? If so, which type?

- 2. A sample of 15 pieces of data is collected, and we wish to perform the **level test** H0 vs. Ha. The population standard deviation is known to be 0.35. The sample mean is used to calculate the data z value of -2.45.
 - a) Determine the p-value.

- b) If the true population mean is 3.6, was an error made in this test? If so, which type?
- c) If the true population mean is 4.0, was an error made in this test? If so, which type?

- 1. Suppose that we are testing H0:µ=5 vs. Ha:µ≠5 at the 0.05 level, and we are going to collect 12 pieces of data with a known population standard deviation of 0.3.
 - a) Determine the probability of Type II error for the alternative $\mu=5$. Probability of Type II error = _____
 - b) Determine the probability of Type II error for the alternative μ =4.8. Probability of Type II error = _____
 - c) Determine the probability of Type II error for the alternative μ =6.0. Probability of Type II error = _____
- 2. Suppose that we are testing H0: μ =10 vs. Ha: μ ≠10 at the 0.01 level, and we are going to collect 15 pieces of data with a known population standard deviation of 0.5.
 - a) Determine the probability of Type II error for the alternative μ=10.4 Probability of Type II error=Probability of Type II error=_____
 - b) Determine the probability of Type II error for the alternative μ =9.6 Probability of Type II error=Probability of Type II error=
 - c) Determine the probability of Type II error for the alternative μ=11.0 Probability of Type II error=Probability of Type II error=_____

- 1. Suppose that we assume the population standard deviation is 0.4, and we are testing H0:µ=3 vs. Ha:µ≠3. We want the following powers (probability of detection):
 - \circ Power (β =0.80) with D=0.4
 - Power (β =0.90) with D=0.5

How much data is needed to satisfy both power requirements?

We would need a sample size of n=50 to meet both power conditions.

- Suppose that we assume the population standard deviation is 0.6, and we are testing H0:µ=8 vs. Ha:µ≠8. We want the following powers (probability of detection):
 - \circ Power (β =0.75) with D=0.5
 - Power (β =0.95) with D=0.7

How much data is needed to satisfy both power requirements?

We would need a sample size of n=45 to meet both power conditions.

- 3. Suppose that we assume the population standard deviation is 0.3, and we are testing H0:µ=7 vs. Ha:µ≠7. We want the following powers (probability of detection):
 - \circ Power (β =0.60) with D=0.3
 - Power (β =0.85) with D=0.5
 - Power (β =0.95) with D=0.7

How much data is needed to satisfy all three power requirements?

We would need a sample size of n=120 to meet all three power conditions.